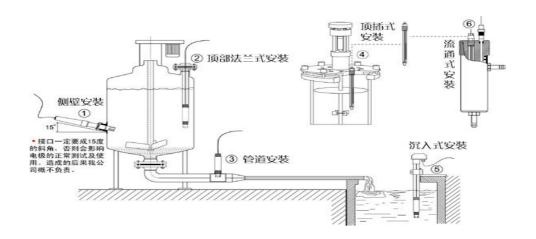
# 电导率传感器

## 用户手册·



### 1. 技术参数


测量方法 石墨电极法 G3/4直管螺纹  $0 \sim 5000 \mu S/cm$ 测量范围 分辨率 1µS/cm 测量精度 ±1.5%F.S. 工作温度 0 ~ 50°C 工作压力 < 0.3MPa 供电电压 12 ~ 24VDC 信号输出 RS-485(Modbus/RTU) ф30 外壳材质 POM 安装方式 浸入式安装,3/4"NPT管螺纹 标配 10 米, 可定制 线缆长度 温度补偿 自动温度补偿(Pt1000) 校准方式 两点校准 功耗 0.3W@12V 防护等级 IP68

### 2. 产品介绍

- 饮用水/地表水/各种供水/工业水处理
- 信号输出: RS-485 (Modbus/RTU协议)
- 方便连接到PLC、DCS、工业控制计算机、通用控制器、无纸记录仪器或触摸屏等第三方设备。
- 浸入式安装,带3/4"NPT管螺纹,便于沉入式安装或安装在管道和罐体。
- IP68防护等级。

### 3.安装和电气连接

#### 3.1安装



注意:传感器安装测试时离容器的底部和侧壁至少2cm

#### 3.2电气连接

- 红色线—电源线(12~24VDC)
- 黑色线—地线(GND)
- 蓝色线—485A
- 白色线—485B
- 绿色线—屏蔽线

通电前应仔细检查接线顺序,避免因接线错误而造成不必要的损失。

接线说明:考虑到线缆长期浸泡在水中(包括海水)或暴露在空气中, 所有接线处均要求做防水处理,用户线缆应具有一定的防腐蚀能力。

### 4.维护和保养

#### 4.1 使用和保养

- 建议每隔30天清理传感器测量探头附着物;清理时避免使用硬物造成测量探头 导光部分划伤;请用软的湿布进行擦拭。
- 传感器探头如太脏或结垢,可以用洗洁剂或0.5克/100毫升的稀盐酸或稀硝酸来 清洗。
- 建议用水流清洗传感器的外表面,如果仍有碎屑残留,请用湿的软布进行擦拭。
- 电导率在安装前必须用蒸馏水清洗,注意不要划伤石墨表面。

安装测量:避免在水流湍急处进行安装测量,减少水流气泡对测量的影响。保持测量探头距离底部2cm。

#### 4.2校准

#### a) 零点校准

蒸馏水冲洗传感器测量探头平面,将探头甩干。将传感器静置于空气中,待数值稳定后发送零点校准指令,数值稳定大约3分钟。

#### b)斜率校准

蒸馏水冲洗传感器测量探头平面,将探头甩干。将传感器垂直放置于标准溶液 (5000uS/cm)中,注意传感器离容器的底部和侧壁至少2cm,进行斜率校准。 校准指令详见附录。

### 5.质量和服务

#### 5.1质量保证

我司提供自销售日起一年内的本产品售后服务,但不包括不当使用所造成的损坏,若需要维修或调整,请寄回,但运费需自付。

#### 5.2配件和备件

| 说明  | 数量 ( pcs ) |
|-----|------------|
| 传感器 | 1          |
| 合格证 | 1          |
| 说明书 | 1          |

### 附录 数据通讯

#### 1. 数据格式

Modbus通信默认的数据格式为:9600、n、8、1(波特率9600bps、1个起始位、8个数据位、无校验、1个停止位)。

波特率等参数可以定制。

- 2. 信息帧格式 (xx代表一个字节)
- a) 读数据指令帧:
  - 01
     03
     xx
     xx
- b) 读数据应答帧:
  - 01
     03
     xx
     xx.....xx
     xx xx

     地址
     功能码
     字节数
     应答数据
     CRC校验码(低字节在前)
- c) 写数据指令帧:
  - 01
     06
     xx
     xx
     xx
     xx
     xx
     xx

     地址
     功能码
     寄存器地址
     写入数据
     CRC校验码(低字节在前)
- d) 写数据应答帧 (同写数据指令帧):
- 01
   06
   xx
   xx

#### 3. 寄存器地址

| 寄存器地址  | 名称        | 读/写              | 说明                                                                              | 寄存器<br>个数<br>(字节) | 数据类型              |
|--------|-----------|------------------|---------------------------------------------------------------------------------|-------------------|-------------------|
| 0x0100 | 温度值       | R<br>读           | ℃值x10(如:<br>25.6℃的温度显示<br>为256,默认1位小<br>数。)                                     | 1 ( 2字 节 )        | unsigned<br>short |
| 0x0101 | 值         | R<br>读取          | 量程为 0~5000μ<br>S/cm 时,显示值就<br>是对应的实际电导<br>率值(如:162μ<br>S/cm的电导率显示<br>为162;无小数位) | 1 (2字 节)          | unsigned<br>short |
| 0x1000 | 温度校准      | R/W<br>读取/<br>写入 | 温度校准:写入数<br>据为实际温度值<br>x10;读出数据为温<br>度校准偏移量x10。                                 | 1 (2字 节)          | unsigned<br>short |
| 0x1001 | 零点校准      | R/W<br>读取/<br>写入 | 在空气中进行零点<br>校准。校准时写入<br>数据为0。                                                   | 1 (2字             | unsigned<br>short |
| 0x1003 | 斜率校<br>准  | R/W<br>读取/<br>写入 | 在 0~ 5000µS/cm<br>的标准溶液中校<br>准,校准时写入<br>5000                                    | 1 (2字<br>节)       | unsigned<br>short |
| 0x2000 | 传感器<br>地址 | R/W<br>读取/<br>写入 | 默认为1,数据范围<br>1-255。                                                             | 1 (2字 节)          | unsigned<br>short |
| 0x2003 | 波特率       | R/W<br>读取/<br>写入 | 默认为9600。写入<br>0为4800;写入1为<br>9600;写入2为<br>19200。                                | 1 ( 2字<br>节 )     | unsigned<br>short |

| 0x2020 | 恢复出 | W | 校准值恢复默认   | 1 (2字 | unsigned |
|--------|-----|---|-----------|-------|----------|
|        | 厂设置 | 写 | 值,写入数据为0。 | 节)    | short    |
|        |     |   | 注意,传感器重置  |       |          |
|        |     |   | 后需再次校准方可  |       |          |
|        |     |   | 使用。       |       |          |

#### 4. 命令示例

#### a) 更改从机地址:

地址:0x2000(42001)

寄存器个数:1

功能码:0x06

默认传感器地址:01

更改传感器的Modbus设备地址,将设备地址01改为06,范例如下:

发送指令: 01 06 20 00 00 06 02 08

回应: 01 06 20 00 00 06 02 08;注:地址改为06,掉电保存。

#### b) 波特率:

地址: 0x2003(42004)

寄存器个数:1

功能码:0x06

默认值: 1 (9600bps)

支持的值: 0-2 (4800-19200bps)

波特率可上位机设置更改,更改后不需重启即可工作,掉电后波特率保存上位机设置。波特率支持4800,9600,19200。整数值分配的波特率如

#### 下:

| 整数 | 波特率      |
|----|----------|
| 0  | 4800 bps |
| 1  | 9600 bps |

发送指令: 01 06 20 03 00 02 F3 CB

回应: 01 06 20 03 00 02 F3 CB 注:波特率改为了19200bps,掉电保存。功能寄存器。

#### a)测量温度指令:

地址: 0x0100 (40101)

寄存器个数:1

功能码:0x03

读取示例值:19.2℃

发送指令: 01 03 01 00 00 01 85 F6

回应: 01 03 02 00 C0 B8 14

返回十六进制无符号整型数据,温度值=Integer/10,保留1位小数位。

#### b)测量电导率值指令:

地址: 0x0101 (0x40102)

寄存器个数:1

功能码:0x03

读取示例值:500µS/cm

发送指令: 01 03 01 01 00 01 D4 36

回应: 01 03 02 01 F4 B8 53

寄存器返回十六进制无符号整型数据,电导率值=Integer。

#### c) 连续读取温度和电导率值指令:

地址:0x0100(40101)

寄存器个数:2

功能码:0x03

读取示例值:温度19.2℃和电导率值500µS/cm

发送指令: 01 03 01 00 00 02 C5 F7

回应: 01 03 04 00 C0 01 F4 FA 18

寄存器返回十六进制无符号整型数据,温度值=Integer/10,保留1位小数位寄存器返回十六进制无符号整型数据,电导率值=Integer。

#### d)校准指令:

#### 温度校准

地址: 0x1000(41001)

寄存器个数:1

功能码:0x06

校准示例:温度25.8℃下校准

发送指令: 01 06 10 00 01 02 0D 5B

回应: 01 06 10 00 01 02 0D 5B

传感器需要在恒定温度环境下,温度示数不再波动后校准。

#### 电导率零点校准

地址: 0x1001(41002)

寄存器个数:1

功能码:0x06

校准示例:在空气中校准

发送指令: 01 06 10 01 00 00 DC CA

回应: 01 06 10 01 00 00 DC CA

#### 电导率斜率校准

地址: 0x1003(41004)

寄存器个数:1

功能码:0x06

校准示例:在5000µS/cm的电导率溶液中校准

发送指令: 01 06 10 03 13 88 70 5C

回应: 01 06 10 03 13 88 70 5C

#### 5. 错误响应

如果传感器不能正确执行上位机命令,则会返回如下格式信息:

| 定义  | 地址   | 功能码     | CODE | CRC校验  |
|-----|------|---------|------|--------|
| 数据  | ADDR | COM+80H | XX   | CRC 16 |
| 字节数 | 1    | 1       | 1    | 2      |

a) CODE: 01 - 功能码错

03 - 数据错

b) COM:接收到的功能码